Identification of Functional Amino Acid Residues Involved in Polyamine and Agmatine Transport by Human Organic Cation Transporter 2

نویسندگان

  • Kyohei Higashi
  • Masataka Imamura
  • Satoshi Fudo
  • Takeshi Uemura
  • Ryotaro Saiki
  • Tyuji Hoshino
  • Toshihiko Toida
  • Keiko Kashiwagi
  • Kazuei Igarashi
چکیده

Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2).

Agmatine has received considerable attention recently. Available evidence suggests that agmatine functions as a neurotransmitter and inhibits, via induction of antizyme, cellular proliferation. Because of its positive charge, agmatine will not appreciably cross cellular membranes by simple diffusion. Indeed, all physiological models require a channel or transporter protein in the plasma membran...

متن کامل

Polyamine transport system mediates agmatine transport in mammalian cells.

Agmatine is a biogenic amine with the capacity to regulate a number of nonreceptor-mediated functions in mammalian cells, including intracellular polyamine content and nitric oxide generation. We observed avid incorporation of agmatine into several mammalian cell lines and herein characterize agmatine transport in mammalian cells. In transformed NIH/3T3 cells, agmatine uptake is energy dependen...

متن کامل

Cloning and functional expression of a human liver organic cation transporter.

Polyspecific organic cation transporters in the liver mediate the elimination of a wide array of endogenous amines and xenobiotics. In contrast to our understanding of the mechanisms of organic cation transport in rat liver, little is known about the mechanisms of organic cation transport in the human liver. We report the cloning, sequencing, and functional characterization of the first human p...

متن کامل

Unveiling the Mechanism of Arginine Transport through AdiC with Molecular Dynamics Simulations: The Guiding Role of Aromatic Residues

Commensal and pathogenic enteric bacteria have developed several systems to adapt to proton leakage into the cytoplasm resulting from extreme acidic conditions. One such system involves arginine uptake followed by export of the decarboxylated product agmatine, carried out by the arginine/agmatine antiporter (AdiC), which thus works as a virtual proton pump. Here, using classical and targeted mo...

متن کامل

Molecular cloning and functional characterization of a polyspecific organic anion transporter from Caenorhabditis elegans.

We have cloned a polyspecific organic anion transporter from Caenorhabditis elegans and elucidated its functional characteristics. The C. elegans anion transporter (CeOAT1) codes for a protein of 526 amino acids containing 12 putative transmembrane domains. It exhibits significant homology at the level of amino acid sequence to the C. elegans organic cation transporter and to the mammalian orga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014